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Abstract. We calculate the eigenspectrum of random walks on the Eden tree in two and 
three dimensions. From this, we calculate  the spectral dimension d, and the walk 
dimension d, and test the scaling relation d,=2ddd, (=2dldw for an Eden tree). 
Finite-size induced crossovers are observed, whereby the system crosses over from a short- 
time regime where this relation is violated (particularly in two dimensions) to a long-rime 
regime where the behaviour appears to be complicated and dependent on dimension, even 
qualitatively. 

1. Introduction 

Treelike structures arise in many situations in statistical physics, 'including clusters 
formed by irreversible growth processes modelled, for example, by diffusion-limited 
aggregation [l] (which are treelike on large scales) and dielectric breakdown [2] .  In 
this paper, we consider a particularly simple tree structure called Eden tree [3] which 
is formed on a lattice by a modification of the usual Eden process [4] (in which a 
compact cluster grows) so that an empty site which is a neighbour to more than one 
occupied site becomes ineligible for occupation. An~Eden kee is a compact random 
structure in contrast to the classical Cayley tree which &not be contained in any 
finite-dimensional space. It is also a tree without any loops as .opposed 'to other 
compact random structures, e.g., a Voronoi lattice. 

The study of diffusion on treelike structures is interesting in that it may present 
qualitatively different behaviour from structures with many loops (particularly those 
that connect large branches). The Eden tree model was studied in detail by Dhar and 
Ramaswamy [3] using various methods. They calculated the spectral dimension d, [5] 
for two- and three-dimensional Eden trees by applying the node counting theorem [6] 
and also the random walk dimension d, [7] by a direct simulation of random walks as 
well as through the backbone statistics of the tree, and discussed them in terms of a 
scaling argument. A surprising conclusion was drawn from these discussions; they 
concluded that a typical long walk samples only order-one segments of the backbone 
(including the dangling ends attached to this segment) so that the usual scaling relation 
PI 

d, = 2dCld, (1) 
does not hold. (Here df= d since the Eden trees are compact.) While the calculation of 
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d,  (particularly in two dimensions) seemed accurate, the graphs from which d, was 
deduced appeared to show considerable curvature. Thus a more accurate determi- 
nation of these exponents appeared desirable to test the violation of relation (1) 
better. 

The scaling law (1) is expected to be valid in general because it follows by assuming 
only: (a) the equivalence of the vibrational and diffusional problems (Alexander and 
Orbach [SI) and (b) that a random walk starting from a given site has a homogeneous 
probability of visiting any site within the average distance travelled in a given time. 
Here we are considering long-time limits and the expression homogeneous is used in 
the sense that ratios of the probabilities of visiting different sites within the specified 
distance are finite. In fact relation (1) is sometimes used as the definition of the 
spectral dimension d,. In their work [3], Dhar and Ramaswamy essentially reject 
assumption (b) thereby rejecting the relation for the Eden tree. 

This is surprising because it appears at first that any random walk satisfying the 
detailed balance condition should in principle satisfy condition (b) above. This should 
be true independent of the structure and thus for example (1) holds for Euclidean 
lattices in all dimensions and also for critical percolation clusters [9]. 

In this paper, we re-examine this rather curious observation of (31, using a method 
which allows a more accurate numerical evaluation of both d,  and d ,  from the same 
data. This is the method of calculating the eigenspect” of the so-called hopping 
probability matrix W by Saad’s diagonalization method [lo] and making use of the 
Laplace transform relationship between this spectrum and quantities such as the 
return-to-origin probability and the velocity autocorrelation function [ll, 121. (Here 
W has elements W,, which are just the probability of a random walker at site j hopping 
to site i in the next time step.) This corresponds to averaging over all random walks 
starting from every point of the cluster. The method was used previously [12,13] for 
two- and three-dimensional percolation clusters very successfully and we expect it to 
work just as well for the Eden trees. 

Thus we first construct an Eden tree of size S by simulation on the square and 
simple cubic lattices, create the matrix W for a random walk (we use a blind ant model 
where the random walker has an equal probability of hopping between any pair of 
neighbouring sites), and calculate the eigenvalues and eigenvectors of W for the 
largest M (typically a few hundred) eigenvalues to very high precision (typically up to 
six decimal places) using the Amoldi-Saad algorithm [lo]. The eigenvalue density 
n(d) is then expected [13] to scale as 
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n(d) - Jh lJq2-’. (2) 
One can also construct another interesting function z(d) = n(A)a,(d - 1)’ [14] from the 
eigenvalues and eigenvectors of W, where a, are the coefficients entering the mean 
position autocorrelation (r(t).r(O)) =&a,d‘. The coefficients a, are determined when 
the stationary initial distribution is expanded in terms of the eigenvectors of W. This 
function is expected [12,13] to scale as 

z(d) - Iln dzJ’-”G. (3) 

2. Numerical results 

Our numerical results for n(d) and z(A) are plotted in figure 1 and figure 2, 
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respectively. (The values of x plotted have been scaled up by a factor of the size S of 
the tree compared with the convention used in [I31 in order to separate different S in 
the figure.) The cluster sizes for which the calculations were made are S=2500,5000, 
10 000 for the square lattice for which 200,400, and 200 independent realizations were 
averaged (respectively), and S=2500, 5000 for the simple cubic lattice for which 200 
and 400 independent realizations were averaged (respectively). 

From figure l(a) for the square lattice, there is apparently a sharp cluster-size 
dependent crossover which divides a region of larger I h A l  (correspoding to shorter 
time) where an excellent power-law fit can be made, from the smaller llndl region 
where another power-law fit may also be possible. We will see later that the locations 
of these crossovers are consistent with the finite size scaling with the walk dimension. 
Figure l(b) for the simple cubic lattice gives a much less clear indication of such a 
crossover, but nonetheless, the sudden flattening of the data in the regions of smallest 
/inAI is consistent with a crossover interpretation. We observe that the right-hand side 
regions in these figures should give the asymptotic exponent corresponding to (2) as S 
increases (because this is the region before the finite size effects appear to set in). 
However, the apparent power-laws in the left-hand side region are still not under- 
stood. Moreover, it is even possible that the qualitative behaviour of these crossovers 
changes when S is made much larger; since in the present analysis we are limited to 
relatively small Eden trees, we cannot be sure if there is not another true asymptotic 
behaviour. 

Estimating the slopes of the log-log plots in the right-hand side regions and using 
(2), we obtain 

ds = 1.22 f. 0.02 (d=2) (4) 

d3= 1.32k0.02 (d = 3) (5) 

and 

Fignre 1. (a) ?be eigenvalue density n(2) for the Eden treeon the square lattice. The data 
points 0, x  and A correspond to the average over 200, 400, and 200 clustcrs of size 
S= 2500,5oW and 10 000, respectively. The solid lines are obtained by least squares fitting 
to the data for Iln 21 larger than its crossover value (number of points used in the fits being 
14, 19, and 19 for the three sizes respectively), and the dotted lines are from the similar fits 
to the data smaller than the crossover point: (b) n(2) for the simple cubic lattice where the 
symbols 0 and X correspond also to S=2500 and 5000, respectively. 
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Figure 2. (a) The function ~(2. )  for the Eden tree on the square lattice. The symbols 0, 
x , and A have the same meaning as in figure 1; (b) for the simple cubic lattice. 

where the errors quoted are mainly the regression errors but also include some error 
due to the choice of the region to fit and that due to the small variation for different 
cluster sizes. These estimates are consistent with those of [3] but improves the 
accuracy especially in three dimensions. In particular, we rule out the possibility that 
d, is the same for two and three dimensions. 

The results for ~(1) in figure 2 show an even more interesting cluster-size 
dependent anomaly. In figure 2(a) for the square lattice, starting from the larger /In dI 
(i.e. shorter time) region, there is a range of about one to two decades where an 
excellent power law fit can be made, and then a sudden and large decrease occurs. 
This anomaly is reproducible in independent batches of clusters and thus not causd by 
simple statistical fluctuations. In figure 2(b) for the simple cubic lattice, another sharp, 
but very different type of crossover is observed, where the small IlnJ. (or long time) 
region also gives a power-law but with a different exponent. 

Let us first discuss the results shown in figure Z(a) for the square lattice in more 
detail. Here if only the flat region for larger IhLl is fitted to a power-law, the 
exponent comes out to be about 0.29 ir0.01,0.29f0.01, and 0.19 irO.Oi for S=2500, 
5000, and 10 000, respectively. We note that the last value would yield d, = 2.47 f 
0.03, which would be barely consistent with the value d,=2.54+0.04 obtained in [3] 
from the backbone statistics. This also means that these data would violate (1) very 
strongly, since 2d/dw would be about 1.62+0.02 using this value of d,. Moreover, 
since the crossover point where the drop begins moves to smaller Iln ,I/ for larger 
cluster size S, we would expect this exponent to be the correct asymptotic exponent d, 
for S+ m . 

Our interpretation of this result is as follows: for sufficiently small time (thus 
length) scales (tet) a typical random walk is trapped (by lack of loops) within 
order-one segment of the backbone (together with its dangling side branches) as 
proposed in [3], which results in a small d,and the violation of (1). The crossover time 
t should be such that 
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where L is the length scale of the cluster and d, is the walk dimension in this regime. 
Translated to the corresponding value in Iln A / ,  the crossover point should scale as 

IlnA,I a t - l -  LWd=. (7) 

However, as the walk goes beyond this time scale, it is forced by the finite size effect 
to sample more and more segments of the backbone. Thus over long times, an 
effective d, increases, leading to the downward tendency in figure 2(a) beyond the 
crossover. Of course, for even longer times, the size of the visited region becomes 
limited by the total size of the cluster and the walk visits every site of the cluster; 
however, such a Iong-time regime is not reached in our figure. 

2 x  for S=2500, 5000, and 10000, respectively. In comparison, 
L - 6  with L = dS/2  and the estimate d, = 2.47 gives 3.5 x 1.5 x W4, and 
6 . 4 ~  lo-’, in fair agreement with the discussion above. The discrepancy of about a 
factor of 1.5 in the absolute numbers should be due to the fact that our method is 
equivalent to summing over all random walks starting from all sites of the cluster and 
not just from the seed site at the centre. 

Having identified dw, we can return to the crossovers observed in figure l(a) for 
n(L) in two dimensions. These crossovers occur roughly around IlnLl= 1 x 
5 x lo-’, and 2 X lo-’ for S = 2500,5000, and 10 000, respectively. The ratios of these 
numbers are again in fair agreement with those from (7). 

The situation for n(A) in three dimensions is much less clear. In figure 2(b), n(A) is 
plotted for S=2500 and 5000 for the simple cubic lattice. Similarly to the square 
lattice, there is a flat region for larger Iln 11 which can be fitted to a power-law and 
what seems to be a crossover to another power-law at smaller Iln Al. The first region 
gives slopes of 0.49+0.01 and 0.51 f O . O 1  for S=2500 and 5000, respectively. This 
would translate to d, of about 3.92 k 0.08 and 4.08 20.09, respectively, and thus, with 
df=d=3,  we would have 2dfld, of around 1.5 which would yield a much smaller 
deviation from (1) than in two dimensions. 

Beyond the crossover in the smaller IlnkI region, we have another power-law with 
an exponent of about 0.32 and 0.29 for S=2500 and 5000, respectively. Since these 
exponents would lead to smaller values of d, in this region, we would have an even 
stronger violation of the scaling relation (1). 

The crossover point is at about Iln All = 1 X for S= 2500 and 5000, 
respectively. The ratio of these two numbers is in good agreement with (7) when a 
value of dw=4.08 is used. Thus, we tentatively conclude that the asymptotic behav- 
iour for an infinite Eden tree in three dimensions may also violate the condition (b) 
and thus (1) (but less strongly than in two dimensions). However, we do not 
understand the regime for t*z. One speculation would be that, in the latter regime, 
the random walk does not come to satisfy (b) over the whole cluster but becomes 
trapped in some parts of it, e.g. in the surface of the Eden tree. The walk dimension of 
this trapping region would then determine the slope after the crossover. However, the 
surface of the Eden model is a particularly difficult problem from the numerical point 
of view, with a very slow and non-monotonic convergence to the asymptotic behav- 
iour [15]. It is also possible that the cluster sizes considered here are not yet in the 
asymptotic regime and that for much larger clusters a different picture emerges. 
Unfortunately no suitable technique is available to calculate ds and d, accurately on 
very large clusters. 

Numerically, the crossover values l In& for n(A)  are approximately 5 x 
and 1 x 

and 4 X 
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3. Conclusion and discussion 

In this work we have calculated the eigenspectrum of the random walk hopping 
probability matrix Wand from this computed the critical exponents ds and d, for the 
Eden tree in two and three dimensions. By more accurate calculations, we confirm the 
violation of the condition (b) in section 1 on two-dimensional Eden trees, in 
agreement with [3], and moreover ow data suggest that the same is true for three 
dimensions (although less strongly). 

A natural question is why the detailed balance in this problem does not guarantee 
a homogeneous probability distribution within the expected travelling distance, since 
the latter may appear to be a consequence of ergodic@. However, ergodicity usually 
manifests itself as the evolution of any initial distribution of random walkers even- 
tually into the stationary one. This is a statement about the ensemble of random walks 
of all starting points, and not about those of an individual starting point. Thus it is not 
necessary for an individual starting point to yield a homogeneous probability even in 
the f+ m limit on an infinite Eden tree. Rather, it can so happen that the probability 
distribution for a given starting point is very anisotropic, sampling only order-one 
segment of the tree, but when we consider all possible starting points, the entire 
cluster is sampled, if one waits long enough. 

It is also interesting to consider whether a similar situation arises in tree structures 
in general. A typical tree-like structure encountered in statistical physics is the 
diffusion limited aggregate (DLA) [I]. The available numerical results [16] from direct 
simulation of random walk displacements indicate that &=2.56+0.10 in d = 2  and 
3.33k0.25 in d=3, while the simulation of the return-to-origin probability in the 
same reference gives d,=1.20+0.1 in d = 2  and 1.3010.1 in d=3. Using the known 
estimates [5] of df=1.68f0.05 in d = 2  and 2.5k0.06 in d = 3  together with the 
estimatesford,from[16], weobtain thevalueof2d,/dwto beabout1.3110.lind=2 
and 1.50+0.1 in d=3. While these values are not inconsistent with the direct 
estimates of ds from [16], they are sufficiently different (particularly in d=3) to 
warrant further investigation. 

Indeed, it may be possible that more or less all tree-like structures force an 
anisotropic probability distribution. If this were the case, it would be of great interest 
to develop a systematic theory of this anisotropy, perhaps with different coherence 
length exponents characterizing the radial and tangential directions in a manner 
somewhat similar to directed percolation [9]. This is, however, clearly out of the scope 
of this work and must await further research. 
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